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1.  Introduction and Objectives 
Soil moisture is a central variable to many activities of the Army.  It affects combat 

logistics including camp siting and troop routing.  It impacts the sustainable management of 

training lands through its association with erosion and land degradation, and it plays a role in 

target acquisition systems and the detection of improvised explosive devices (IEDs), landmines, 

and unexploded ordnance.  In assessments of vehicle mobility, soil moisture affects the rating 

cone index, which is used as a measure of soil strength (Mason et al., 2001).  As the soil 

moisture increases, the soil strength and thus the trafficability decrease nonlinearly.  When the 

soil moisture is relatively high, small differences in its value can change the trafficability 

conditions from “go” to “no go” (Mason and Baylot, 2009).  Soil moisture is also a central 

variable in hydrology.  It affects rates of infiltration, evaporation, transpiration, and groundwater 

recharge, and it controls the partitioning of available energy at the land surface into sensible and 

latent heat fluxes.  For example, antecedent soil moisture conditions have been shown to affect 

the production of floods and to benefit real-time flood forecasting (Kitanidis and Bras, 1980; 

Ntelekos et al., 2006). 

 Unfortunately, soil moisture is difficult to observe directly with the spatial resolutions 

(grid cells with 10-30 m linear dimensions) and extents (10,000-250,000 ha) that are required for 

many of the applications described earlier.  In-situ measurement techniques such as time-domain 

reflectometry (TDR) can accurately measure soil moisture over small distances (centimeters) 

(Noborio, 2001; Robinson et al., 2003), but this method is impractical for estimation of soil 

moisture over large spatial extents.  Alternatively, soil moisture can be inferred using satellite 

sensors.  Satellite-based active/passive radiometers can estimate soil moisture over large spatial 

extents, but they are only sensitive to soil moisture near the soil surface (top 2-3 cm), and their 

spatial resolution is typically very coarse (10-25 km) (e.g., Entekhabi et al., 2004).  Other 

methods estimate soil moisture from an energy balance of the land surface, which is inferred 

from optical and thermal remote-sensing images (Ahmad and Bastiaanssen, 2003; Scott et al., 

2003; Fleming et al., 2005).  This approach can produce spatial patterns with a 1 km resolution if 

images are required on any given date (which requires use of the MODIS instrument).  In 

addition, processing of such images is highly technical and thus expensive.  Soil moisture can be 

inferred from weather forecasting models such as the Air Force Weather Agency’s (AFWA) 

Agricultural Meteorology (AGRMET) model (AFWA, 2002), but these models also typically 
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produce estimates with coarse spatial resolutions (1-40 km).  Ground-based methods are being 

developed to produce soil moisture estimates using cosmic rays (Desilets et al., 2010; 

Shuttleworth et al., 2010), but these methods still have a relatively coarse resolution (~800 m).   

Thus, methods are required to downscale remote-sensing or modeling values from an 

intermediate resolution of about 1 km to a fine resolution of about 30 m.  Such estimation 

methods require an additional data source that is both available at the fine resolution and strongly 

related to soil moisture variations.  Topographic data is available nearly globally at a 30 m 

resolution from ASTER (Abrams et al., 2010), and various topographic attributes are known to 

influence soil moisture patterns at the spatial resolutions of interest (Western et al., 1999; 

Florinsky et al., 2002; Lin et al., 2006).  For example, Burt and Butcher (1985) studied a 1.4 ha 

hillslope and found that the so-called wetness index explained the accumulation of water at 

downhill and lower-slope locations at certain times.  The wetness index is calculated from the 

specific contributing area and topographic slope and was originally derived to describe lateral 

redistribution of water in TopModel (Beven and Kirkby, 1979).  Western et al. (1999) observed 

linear correlations between soil moisture and both the wetness index and the potential solar 

radiation index (PSRI) in the 10.5 ha Tarrawarra catchment in Australia.  PSRI is an index that 

describes the insolation of a point with a given slope and aspect in comparison to a horizontal 

surface at the same location (Moore et al., 1993; Dingman, 2002).   

Several practical difficulties arise in using topographic information to estimate soil 

moisture patterns.  Within a given region, soil moisture patterns can have different spatial 

structures at different times (Grayson et al., 1997), and the spatial structures can have complex 

organizations and discontinuities that are difficult to characterize with standard spatial estimation 

methods (Fleming et al., 2005).  Soil moisture patterns also typically exhibit significant 

variability across a wide range of spatial scales (Seyfried, 1998; Famiglietti et al., 2008), and the 

nature of the dependence of soil moisture on topography can be different in different regions 

(Busch et al., 2011).  All of these issues make accurate downscaling or interpolation of soil 

moisture based on topographic information difficult. 

The overall objective of this project is to develop, calibrate, and apply a method to 

estimate fine-scale soil moisture patterns based on intermediate-resolution soil moisture 

estimates and the observed topographic dependence of soil moisture.   The proposed method is a 

conceptual model that estimates the local soil moisture based on representations of the processes 
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that supply or remove water from the soil.  These processes include:  infiltration, lateral 

redistribution, deep drainage, and evapotranspiration.  The effects of these processes are then 

calculated using topographic attributes and a supplied spatial-average soil moisture (or a grid of 

intermediate-resolution soil moisture values).   

The outline of this report is as follows.  Section 2 derives the conceptual model, and 

Section 3 describes the implementation of this model in an ArcGIS tool.  Section 4 develops two 

calibrations for the model using two available soil moisture datasets (Tarrawarra and Cache la 

Poudre).  This section also evaluates the performance of the method at these watersheds, and 

compares the performance to other available methods.  Section 5 describes the application of the 

method to downscale intermediate-resolution soil moisture patterns for selected regions in 

Afghanistan.  This section also compares attributes of the original and downscaled patterns that 

are relevant for mobility analysis.  Finally, Section 6 closes with the conclusions and possible 

directions for future research. 

 

2.  Methodology 
 In this section, a model is derived that determines the soil moisture at any location within 

a region if the spatial-average soil moisture is known.  The spatial average might be a single 

value for all locations in the region or a grid of average soil moisture values from remote-sensing 

or model simulations.  The local soil moisture is determined using a steady-state approximation.  

All processes that affect soil moisture are assumed to occur steadily in time, and the soil 

moisture is assumed to be at equilibrium so that the total inflow and outflow are balanced.  The 

processes that transport water to or from the soil are infiltration F, deep drainage or recharge to 

groundwater G, lateral unsaturated flow L, and evapotranspiration E.  One can write the water 

balance for the land area that drains through any given segment of an elevation contour as: 

 
0 0 0

= + +∫ ∫ ∫
A A A

Fda Gda L Eda  (1) 

where A is the land area that can contribute flow to the contour segment and F, G, and E are the 

infiltration, recharge, and evapotranspiration rates within that land area (these are expected to 

vary spatially).  L is the lateral outflow occurring through the contour segment. 

The deep drainage at any point is modeled as percolation, which means that the hydraulic 

gradient is controlled by gravity.  Under this assumption, G can be written as: 
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 = vG K  (2) 

where Kv is the unsaturated vertical hydraulic conductivity.  Using the Campbell (1974) equation 

to describe unsaturated hydraulic conductivity, Kv can be written: 

 , /γ γθ φ= v v
v s vK K  (3) 

where Ks,v is the vertical saturated hydraulic conductivity, θ  is the volumetric soil moisture, φ  is 

the porosity, and γ v  is the pore size distribution index.  This implies: 

 , /γ γθ φ= v v
s vG K  (4) 

Lateral flow at any location is described using Darcy’s Law and assuming uniform flow 

with depth in the soil.  Using this approach, the lateral flow is: 

 δ= − hL cK S  (4) 

where δ is the depth within which lateral flow occurs (assumed to be the soil depth), c is the 

length of the contour segment being considered (in practice, the linear dimension of a fine-

resolution grid cell), Kh is the unsaturated horizontal hydraulic conductivity, and S is the 

hydraulic gradient in the horizontal direction.  Heimsath et al. (1999) found that soil depth δ 

depends linearly on the topographic curvature: 

 0 min min( ) /δ δ κ κ κ= −  (6) 

where δ0 is the soil depth when the curvature is zero and minκ is the minimum curvature for 

which soil is present.  Note that curvature is defined as positive for convergent locations and 

negative for divergent locations.  Using this expression for soil depth and the Campbell (1974) 

equation for unsaturated hydraulic conductivity, the lateral flow can be written: 

 min
0 ,

min

γ

γ

κ κ θδ
κ φ

⎛ ⎞−
= − ⎜ ⎟

⎝ ⎠

h

hs hL cK S  (7) 

where Ks,h is the horizontal saturated hydraulic conductivity and γ h  is the pore size distribution 

index in the horizontal direction. 

Evapotranspiration (ET) is determined as a function of a local potential 

evapotranspiration (PET), which is denoted *
pE .  The local PET is calculated from the Penman 

combination equation (Chow et al., 1988): 

 * Δ Δ⎡ ⎤= +⎢ ⎥Δ + Γ Δ + Γ⎣ ⎦
p r aE E PSRI E  (5) 
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where Δ is rate of change of saturation vapor pressure with air temperature, Γ is the 

psychrometric constant, Er is the ET due to radiation, and Ea is the aerodynamic or humidity-

based ET.  PSRI is the potential solar radiation index, which is the ratio between the insolation of 

the topographic surface relative to that of a horizontal surface at the same location.  The PSRI 

can be calculated as a function of the day of year, latitude and topographic slope and aspect 

(Western et al., 1999; Dingman, 2002).  This equation implicitly neglects sensible and ground 

heat fluxes in the energy balance estimate by including PSRI as shown above.  The Priestley-

Taylor equation (Chow et al., 1988) assumes that the humidity-based term is a specified fraction 

α of the radiation-based term, which implies: 

 * αΔ Δ⎡ ⎤= +⎢ ⎥Δ + Γ Δ + Γ⎣ ⎦
p r rE E PSRI E  (9) 

A PET can be similarly calculated for the entire region (denoted Ep).  Over large areas, the 

impact of the topography on the insolation is usually neglected, and the Priestley-Taylor equation 

implies a regional PET: 

 αΔ Δ⎡ ⎤= +⎢ ⎥Δ + Γ Δ + Γ⎣ ⎦
p r rE E E  (10) 

Combining Equations (9) and (10), one can write the local PET in terms of the regional Priestly-

Taylor PET: 

 *

1 1
α

α α
= +

+ +
p p

p

E PSRI E
E  (11) 

The actual evapotranspiration E is then calculated by accounting for the effects of moisture 

limitations, which is modeled with power functions as shown below:   

 
1 1

β βαθ θ
α φ α φ

⎛ ⎞ ⎛ ⎞
= +⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

r a
p pE PSRI E

E  (12) 

where β r  and βa  are vegetation-related parameters.  Based on the literature (Entekhabi et al., 

1991; Rodriguez-Iturbe et al., 1991), a single β would be applied to both terms in Equation (12).  

Here, we allow distinct exponents because moisture limitations may affect the radiation-based 

and humidity-based terms in different ways. 

 We now substitute the expressions for G, L, and E from Equations (4), (7), and (12) back 

into Equation (1), which produces: 
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 , 0 min ,

0 0 0 0
min

( )
(1 ) (1 )

γ γ ββ
γ γ ββ

αδ κ κ
θ θ θ θ

φ κ φ α φ α φ
−

= − + +
+ +∫ ∫ ∫ ∫v h ar

v h ar

A A A Ap ps v s h E EK K
Fda da cS PSRI da da  (13) 

In this expression, we have assumed that φ, Ks,v, Ks,h, γv, γh, δ0, minκ , α, βr, βa, and Ep are all 

spatially constant.  Similar to TopModel (Beven and Kirkby, 1979), the infiltration rate is also 

assumed to be spatially constant, and the hydraulic gradient is assumed to be equal to minus the 

local topographic slope S.  Thus, the equation becomes: 

 , 0 min ,

0 0 0
min

( )
(1 ) (1 )

γ γ ββ
γ γ ββ

αδ κ κ
θ θ θ θ

φ κ φ α φ α φ
−

= + + +
+ +∫ ∫ ∫v h ar

v h ar

A A Ap ps v s h E EK K
F da cS PSRI da da

A A A A
 (14) 

An explicit, analytical solution cannot be obtained for Equation (14), so an approximate 

solution is developed by first considering four simplified cases where one of the four terms on 

the right (deep drainage, lateral outflow, radiation-based ET or humidity-based ET) is much 

more important than the others.  If deep drainage dominates, Equation (14) can be approximated: 

 ,

0

γ
γ θ

φ
= ∫ v

v

As vK
F da

A
 (15) 

In this case, water movement between locations is negligible, so the infiltration at any point in 

the catchment must balance the deep drainage at that point.  Therefore, the water balance 

equation can be written locally as: 

 , γ
γ θ

φ
= v

v

s vK
F  (16) 

Solving for soil moisture, one obtains: 

 
1/

,

γ

θ φ
⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠

v

s v

F
K

 (17) 

The initial objective was to determine the local soil moisture θ as a function of an available 

spatial-average soil moisture θ .  θ  can be calculated by integrating Equation (17) over the 

region for which θ  is available.  If Ap is defined as the area of this region, the spatial average is: 

 1

p

da
A

θ θ= ∫  (18) 

Substituting Equation (17) into Equation (18) and noting that all of the terms that determine θ  

are spatially constant, one obtains: 
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1/

,

γ

θ φ
⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠

v

s v

F
K

 (19) 

Comparing this expression with Equation (17), one observes that: 

 θ θ=  (20) 

Thus, the soil moisture is spatially uniform if deep drainage is the dominant outflow process. 

 We now consider the second case where lateral drainage is the dominant outflow process.  

In this case, Equation (14) simplifies to: 

 0 min ,

min

( ) γ
γ

δ κ κ
θ

κ φ
−

= h

h

s hK
F cS

A
 (21) 

Solving for θ , one obtains: 

 
1 11

min

0 , min

γ γγ κθ φ
δ κ κ

⎛ ⎞ ⎛ ⎞⎛ ⎞= ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ −⎝ ⎠ ⎝ ⎠⎝ ⎠

h hh

s h

F A
K cS

 (22) 

Integrating Equation (22) over the region for which a spatial average is available, one obtains: 

 
1 11

min

0 , min

1 1γ γγ κθ θ φ
δ κ κ

⎛ ⎞ ⎛ ⎞⎛ ⎞= = ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ −⎝ ⎠ ⎝ ⎠⎝ ⎠
∫ ∫

h hh

pp s h pA

F Ada da
A K A cS

 (23) 

The term that remains in the integral [ ]1/1/
min min( / ) / ( ) γγ κ κ κ− hhA cS is a compound topographic 

index, which we call the lateral flow index (LFI).  The average LFI within the region is denoted 

Λ, and it is: 

 
11

min

min

1 γγ κ
κ κ

⎛ ⎞⎛ ⎞Λ = ⎜ ⎟⎜ ⎟ −⎝ ⎠ ⎝ ⎠
∫

hh

p

A da
A cS

 (24) 

Substituting this equation back into Equation (23), one obtains: 

 
1

0 ,

γ

θ φ
δ

⎛ ⎞
= Λ⎜ ⎟⎜ ⎟

⎝ ⎠

h

s h

F
K

 (25) 

Combining Equations (22) and (25), one gets: 

 
11

min

min

γγ κθθ
κ κ

⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟Λ −⎝ ⎠ ⎝ ⎠

hhA
cS

 (26) 

Thus, the spatial pattern of soil moisture is determined by spatial variations in the LFI if lateral 

flow dominates. 
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 Next, we consider the case where the radiation-based ET term in Equation (14) is 

dominant.  Under this scenario, one can simplify the equation as: 

 
0(1 )

β
β θ

α φ
=

+ ∫ r

r

ApE
F PSRI da

A
 (27) 

Again, noting that water movement between locations is negligible in this case, one can rewrite 

Equation (28) as a local water balance: 

 
(1 )

β
β θ

α φ
=

+
r

r

pE
F PSRI  (28) 

Solving for θ , one obtains: 

 
1/ 1/(1 ) 1

β βαθ φ
⎛ ⎞+ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

r r

p

F
E PSRI

 (29) 

Integrating over the region to calculate the spatial-average soil moisture, one gets: 

 
1/ 1/1/1 (1 ) 1 1 (1 )

β ββα αθ θ φ φ
⎛ ⎞ ⎛ ⎞+ +⎛ ⎞= = = Π⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠

∫ ∫
r rr

p p p p

F Fda da
A E A PSRI E

 (30) 

where Π  is the average of an evapotranspiration index (ETI), which is defined as 1/(1/ ) βrPSRI .  

Combining Equations (29) and (30), one gets: 

 
1/1 βθθ ⎛ ⎞= ⎜ ⎟Π ⎝ ⎠

r

PSRI
 (31) 

Thus, if the radiation-based ET term dominates the water balance, the spatial pattern of soil 

moisture is determined by the spatial variations of the ETI. 

 Finally, we consider the case where the humidity-related ET term dominates.  In this 

case, Equation (14) can be written: 

 
0(1 )

β
β

α
θ

α φ
=

+ ∫ a

a

ApE
F da

A
 (32) 

Water movement between locations is negligible in this case, so one can rewrite Equation (32) as 

a local water balance: 

 
(1 )

β
β

α
θ

α φ
=

+
a

a

pE
F  (33) 

Solving for θ , one obtains: 
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1/

(1 )
β

αθ φ
α

⎛ ⎞+
= ⎜ ⎟⎜ ⎟

⎝ ⎠

a

p

F
E

 (34) 

Integrating over the region to calculate the spatial-average soil moisture, one finds: 

 
1/

1 (1 )
β

αθ θ φ
α

⎛ ⎞+
= = ⎜ ⎟⎜ ⎟

⎝ ⎠
∫

a

p p

Fda
A E

 (35) 

Combining Equations (34) and (35), one gets: 

 θ θ=  (36) 

Four estimates for the soil moisture have been produced depending on whether deep 

drainage, lateral flow, radiation-based ET, or humidity-based ET is the dominant process.  These 

estimates are 

 Gθ θ=  (37) 

and: 

 
11/

min

min

γ γκθθ
κ κ

⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟Λ −⎝ ⎠ ⎝ ⎠

h h

L
A

cS
 (38) 

and: 

 
1/1 βθθ ⎛ ⎞= ⎜ ⎟Π ⎝ ⎠

r

R PSRI
 (39) 

and: 

 θ θ=A  (40) 

A final estimate for θ  is obtained using a weighted, arithmetic average of these four 

approximations: 

 
θ θ θ θθ + + +

=
+ + +

G G L L R R A A

G L R A

w w w w
w w w w

 (41) 

where wG, wL, wR, wA are the weights.  One expects the weights to depend on the magnitude of 

the terms associated with the processes in Equation (14).  In particular, the weight for the deep 

drainage estimate wG should be large if the deep drainage term in Equation (14) is large.  Thus, it 

is proposed that: 

 ,

0

γ
γ θ

φ
= ∫ v

v

As v
G

K
w da

A
 (42) 
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However, this equation is not easily evaluated because it includes the average soil moisture for 

the area upslope from the contour segment being considered.  If this average is approximated 

with the local soil moisture estimate θG  in Equation (37), then Equation (42) becomes: 

 , γ
γ θ

φ
= v

v

s v
G

K
w  (43) 

Similarly, the weight for the lateral flow estimate can be estimated from the associated term in 

Equation (14): 

 0 min ,

min

( ) γ
γ

δ κ κ
θ

κ φ
−

= h

h

s h
L

K
w cS

A
 (44) 

If θ is approximated with the estimate θL  in Equation (38), then Equation (44) becomes: 

 0 ,

γ
θδ
φ

⎛ ⎞
= ⎜ ⎟Λ⎝ ⎠

h

L s hw K  (45) 

The weight for the radiation-based ET term is: 

 
0(1 )

β
β θ

α φ
=

+ ∫ r

r

Ap
R

E
w PSRI da

A
 (46) 

Notice that this expression includes the average of βθ rPSRI  for the region upslope of the 

contour segment.  Approximating this average with the local soil moisture estimate θR , one 

obtains: 

 
1

β
θ

α φ
⎛ ⎞

= ⎜ ⎟+ Π⎝ ⎠

r

p
R

E
w  (47) 

Finally, the weight for the humidity-related ET term is: 

 
0(1 )

β
β

α
θ

α φ
=

+ ∫ a

a

Ap
A

E
w da

A
 (48) 

Replacing the average of βθ a in this expression with the estimate of the local soil moisture θ A , 

one obtains: 

 
1

βα θ
α φ

⎛ ⎞
= ⎜ ⎟+ ⎝ ⎠

a

p
A

E
w  (49) 

Equations (37), (38), (39), (40), (43), (45), (47), and (49), are now substituted into Equation (41), 

and one obtains: 
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1/1/ 1/
min

, 0 ,
min

, 0 ,

1
1 1

1 1

γγ γ β βγ β

γ γ β

ακθ θ θ θ θ θθ δ θ
φ φ κ κ α φ α φ

θ
αθ θ θ θδ

φ φ α φ α φ

⎡ ⎤ ⎡ ⎤⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞+ + +⎢ ⎥ ⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟Λ Λ − + Π Π +⎝ ⎠ ⎝ ⎠⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎣ ⎦⎣ ⎦=
⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞

+ + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜Λ + Π +⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝

hv h r ah r

v h r

p p
s v s h

p p
s v s h

E EAK K
cS PSRI

E E
K K

β

⎟
⎠

a

 

(50) 

which is the equation that is used to downscale the soil moisture patterns.  In the end, the local 

soil moisture is estimated from the contributions of four terms.  The deep drainage and humidity-

related ET terms do not produce any spatial variability.  The spatial variability due to lateral flow 

is introduced by the LFI, which depends on the parameters γh and κmin, and the spatial variability 

due to radiation-related ET is introduced by the ETI, which depends on one parameter βr.  The 

importance of each of these patterns is determined by the weights, which depend on the spatial-

average soil moisture θ  and various parameters.  The general structure of weighting 

topographic-based patterns using coefficients that depend on θ  is similar to the empirical 

orthogonal function (EOF) approach that was used by Perry and Niemann (2007, 2008).  In that 

approach, the patterns of spatial variation are the EOFs, which are estimated from empirical 

relationships to topographic attributes.   The importance of these patterns on any given date is 

determined by the associated expansion coefficients, which are estimated as a function of θ .  

The structure is also similar to the dynamic linear regression model that was proposed by Wilson 

et al. (2005).  In that method, the soil moisture is estimated by linear regressions against 

topographic attributes, but the regression coefficients are adjusted based on the spatial-average 

soil moisture.  Like the EOF method, the Wilson et al. (2005) method is empirical. 

 

3.  Software Implementation 
The derived model was implemented using the Matlab® (Mathworks, 2009) and 

ArcMap® (ESRI, 2006) software packages.  The model calculations were written as a Matlab® 

script and exported as an executable program that is called by the GIS tool.  Instructions for 

installing and using the GIS tool are provided in the user manual (Coleman et al., 2011).  

Although technically not required for use of the model, the TauDEM toolbox for GIS can be 

used to calculate the slope and contributing area topographic attributes (Tarboton et al., 1997), 

which are required by the conceptual model.  TauDEM is a free, open-source software package 

and instructions for obtaining it are provided in the user manual (Coleman et al., 2011). 
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Although the full model is presented in Equation (50), several simplifications were made 

in the current GIS implementation.  First, the porosity φ is given a pre-specified value of 0.5 

because tests of early versions of the model indicated that it had sufficient flexibility from other 

parameters so that its performance was not reduced by doing so.  In addition, fixing this 

parameter in advance helps the parameter optimization method converge more quickly.  Second, 

the pore-size distribution indices γh and γv were assumed to be equal, leading to a single γ 

parameter for both the horizontal and vertical directions.  Third, the α parameter, which 

determines the humidity-based ET as a fraction of the radiation-based ET, was chosen to be 0.  

This assumption presumes the dominance of radiation in determining ET, and it removes the βa 

parameter from the current implementation, so only a single β is required.  The net effect of 

these simplifications is to reduce the total number of parameters from 10 to 6. 

 

4.  Model Calibration 
The model was calibrated and tested at two different catchments, the Tarrawarra 

catchment near Melbourne, Australia (Western and Grayson, 1998) and a research catchment in 

the Cache la Poudre river basin in northern Colorado (Lehman and Niemann, 2009).  The 

Tarrawarra catchment has homogeneous pasture vegetation, a temperate climate, moderately 

deep soils, and moderate rolling topography.  The Cache la Poudre catchment has aspect-

dependent forest and shrub vegetation, a semi-arid climate, shallow soil with rocky outcrops, and 

steep mountainous topography.  The different climates of the catchments are reflected in the 

distinct ranges of θ  for the soil moisture datasets at each catchment (Figure 1).  At the 

Tarrawarra catchment, soil moisture data were collected on 13 dates in the period between 

September 1995 and November 1996.  The soil moisture data for the Cache la Poudre catchment 

were collected on 9 dates between April and June 2008.  

The calibration of the model at each catchment utilized all of that catchment’s soil 

moisture data.  Specifically, a single parameter set was determined for all dates at each 

catchment.  When applying the model to these catchments (and Afghanistan later in this report), 

the annual average PET was used for Ep, and the PSRI from the winter solstice was used for 

PSRI in Equation (50).  Those choices are consistent with the equilibrium assumption under 

which the model was developed and were found to perform as good or better than using the 
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values associated with each date in the dataset.  The annual average PET at Tarrawarra is 2.27 

mm/day, at the Poudre site it is 2.41 mm/day, and for the region modeled in Afghanistan it is 

4.86 mm/day.  The model performance was quantified using the Nash-Sutcliffe Coefficient of 

Efficiency (NSCE), which is given by the following formula: 

 
[ ]2

21
θ θ

θ θ

−
= −

⎡ ⎤−⎣ ⎦

∑
∑

obs est

obs obs

NSCE  (51) 

where θobs  is the observed soil moisture at a location, θest is the estimated soil moisture at that 

location (from Equation (50)), and θobs  is the observed spatial-average soil moisture, which is 

also used as θ  in Equation (50).  Generally, the best possible value of NSCE is 1.  However, 

Busch et al. (2011) showed that about 40% of the variation in these soil moisture patterns is 

uncorrelated noise, which makes 0.60 approximately the best value that can be achieved in 

practice for these datasets.  The performance of the calibrated model on each day for the two 

sites is shown in Figure 1. 
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Figure 1 – NSCE results for the soil moisture patterns estimated on all available dates at the Tarrawarra and 
Cache la Poudre catchments 
 
 

Note that the average soil moisture values for the two sites do not overlap, but together 

they represent a range of approximately [0.05, 0.50].  The mean NSCE values are 0.272 and 

0.039 for Tarrawarra and Cache la Poudre, respectively.  These values are lower than those 

obtained using the EOF method (Busch et al., 2011), which are 0.348 and 0.140 for Tarrawarra 

and Cache la Poudre, respectively.  However, the model has a greater potential for improvement, 

for example, by calibrating all 10 parameters.  In addition, the model is more readily transferred 

between sites (Busch et al., 2011).  Although the mean NSCE is higher at Tarrawarra, the 

variability of soil moisture is much lower at the Cache la Poudre catchment, which makes higher 

NSCE values more difficult to achieve.  In addition, the Cache la Poudre catchment has 

organized, heterogeneous vegetation, which is not considered by the model.  The calibrated 

parameter values from each catchment are listed in Table 1.  The associated GIS tool uses the 

parameter values from Tarrawarra as default values. 

 
Table 1 - Calibrated parameter values 

  Ks,v Ks,h γ φ δ0 β κmin 
 mm/day mm/day - m3/m3 m - m-1 

Tarrawarra 1.913 944.8 5.842 0.5000 0.9651 4.134 -0.3743 

Cache la 
Poudre 11.65 207.9 9.901 0.5000 0.2926 8.690 -0.2048 

 
The LFI and ETI patterns for each catchment are shown in Figure 2.  Example observed 

and estimated moisture patterns as well as the associated residual patterns for Tarrawarra and 

Cache la Poudre are provided in Figures 3 and 4, respectively.  The three scenarios labeled (a), 

(b) and (c) in each Figures 3 and 4 represent dry, moderate, and wet conditions relative to the 

range of spatial average moisture values observed at each site.  The LFI pattern is evident in the 

observed moderate soil moisture pattern as well as in the estimated patterns for all conditions at 

Tarrawarra.  This results from the strong influence of lateral flow in determining the soil 

moisture patterns at this catchment.  In contrast, none of the observed patterns at the Cache la 

Poudre catchment exhibit such a marked LFI emphasis.  Such a pattern is slightly visible in the 
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using the parameters from the Tarrawarra catchment because that dataset has spatial average soil 

moisture values more similar to these cases.   

The initial patterns, the downscaled patterns, and the histograms of soil moisture values 

for each case before and after downscaling are provided in Figures 5, 6, and 7.  Figure 8 collects 

the results from the dry and very wet conditions into a single figure and zooms in to a sub-

region, which makes the texture that is imposed by the downscaling method more visible.  

In Figure 5, the dry condition, little variation is visible in the downscaled pattern.  That 

result occurs because less variation is produced in the estimated values relative to the other two 

conditions and because a single color scale is used for all three figures.  The low variation in the 

dry pattern arises in part because only two soil moisture values, 0.07 and 0.11, are present in the 

intermediate resolution pattern.  The histogram indicates that the range of values in the 

downscaled pattern has two peaks centered on each of the intermediate pattern values.  Greater 

variation is present in the wet and very wet conditions for the intermediate resolution patterns 

and the downscaled patterns owing to the greater variability in the intermediate resolution 

moisture values. 

The north sides of hillslopes are generally estimated as wetter than the south sides.  This 

is a result of the ETI, which suggests that lower insolation occurs on north-facing slopes.  

Although difficult to observe in Figures 5 through 7, the effect is more evident in the magnified 

images in Figure 8.  Some points with high estimated moisture values due to this insolation 

effect are actually too steep to realistically maintain soil. Further refinements of the model can 

address such situations. 

Drainage patterns are also visible in the magnified image of Figure 8 for the very wet 

condition due to higher moisture estimates in valley bottoms.  That feature is due to greater 

emphasis on the LFI pattern in the model for that situation than in the dry condition.  However, 

discontinuities in the estimates are also apparent in the magnified images.  That effect is related 

to differences in adjacent intermediate resolution values and to different distributions of the 

topographic attributes within the intermediate resolution pixels. 
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The model is designed so that the average of the downscaled soil moisture values within 

any intermediate resolution pixel reproduces the intermediate resolution value exactly.  

However, that feature can lead to soil moisture values that are greater than the porosity.  In 

reality, such points would be saturated and potentially ponded.  The GIS tool contains an option 

that allows the user to cap the soil moisture values at the porosity value.  For the examples 

presented here, the soil moisture values were limited to 0.50, which is the porosity value used in 

the model.  Capping the soil moisture value at the porosity prevents exact replication of the 

intermediate resolution pixel values.  However, in the cases shown here, the error in the mean is 

minimal.  Alternatively, the estimated soil moisture values could be maintained, and any 

locations with values greater than the porosity value could be interpreted as ponded. 

 

6.  Conclusions and Future Research 
 The performance of the downscaling model at the Tarrawarra and Cache la Poudre 

catchments is reasonably good.  The average NSCE values for the model at the Tarrawarra and 

Cache la Poudre catchments are 0.272 and 0.039, respectively.  Those values are lower than the 

average NSCE values obtained by the EOF method, which is also a weighted combination of 

topographic patterns.  However, this application of the model did not calibrate four of the 

model’s parameters (due to the time required to implement such capabilities in the associated 

GIS tool).  Thus, it is expected that the model’s performance can be significantly improved.  In 

addition, the model’s basis in physical processes means that it can eventually make use of other 

information such as soil, vegetation, and climate data, which cannot be readily used in the EOF 

method.  The EOF method also requires calculation of more topographic attributes, which 

increases the computational time required to downscale the patterns.  Finally, the mathematical 

structure of the model means that it is less sensitive to scale effects than the EOF method. 

Future research is needed along three lines.  First, the model should be applied in a 

manner that fully exploits the available parameters.  The vertical and horizontal pore-size 

distribution exponents can be calibrated separately as can the radiation and humidity-based 

exponents when the α parameter is allowed to take values other than zero.  Second, more reliable 

parameter estimation methods should be explored.  In the present application, the model was 

calibrated for two catchments with available soil moisture data and then applied to Afghanistan 

where soil moisture observations are not available.  It is unlikely that the calibrations developed 
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at these catchments are optimal for Afghanistan.  More soil moisture datasets should be collected 

and used for calibration to allow the use of more direct analogs to regions of interest.  In 

addition, strategies to estimate the model parameters from limited soil moisture observations or 

other data should be explored.  Third, the model should be generalized to accept other types of 

data that are available at fine resolutions and are strongly associated with soil moisture 

variations.  In particular, vegetation attributes can be inferred from remote-sensing observations 

at a fine resolution and are expected to impact soil moisture patterns. 
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